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Motivation: high dimensional linear estimation

min
x∈Rp

{ f (x) = l(x) + r(x) } (1)

/ | \
Objective | Reg. term (nonconvex,

Data term nondifferentiable)

(differentiable)

Objective
I Estimate a high dimensional sparse model x ∈ Rp.
I Go beyond the Lasso (biased, not always consistent [8, 2]).
I Regularization term DC function:

r(x) =
p∑
i

h(|xi |)

I Use sparsity for efficient optimization.
I Build on top of existing efficient algorithms [6, 4].
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Nonconvex sparse optimization in the literature

Difference of Convex Algorithm (DCA) [1, 2, 3]
I Solves iteratively weighted `1-penalty.
I Slow but converges in few re-weighting operations.

Sequential Convex Programming (SCP) [6]
I Uses a majorization of the nonconvex penalty.
I Also handles constrained optimization.

General Iterative Shrinkage and Threshold (GIST) [4]
I Extension of proximal methods to nonconvex regularization.
I Estimation of descent step via BB-rule (Barzilai & Borwein).

Limits of those approaches
I Solve the full optimization problem.
I Full gradient computation is expensive.

→ Use an active set to focus on a small number of variables.
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Active set strategy

Principle
I Work on a subset of variables ϕ and solve the problem on this subset.
I Optimality conditions used to update the active set.
I Widely used in convex optimization.
I Sparse optimization: initialization ϕ = ∅.

Nonconvex optimality conditions
I The regularization term is expressed as a DC function:

r(x) = r1(x)− r2(x) with r1 and r2 two convex functions of the form

r1(x) =
∑

i

g1(|xi |), r2(x) =
∑

i

g2(|xi |) (2)

I If x∗ is a stationary point of the optimization problem then

∂r2(x∗) ⊂ ∇l(x∗) + ∂r1(x∗) (3)
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Optimality conditions in practice
Optimality conditions

I r(x) =
∑p

i h(|xi |) =
∑p

i {g1(|xi |)− g2(|xi |)}
I Component-wise optimality condition.
I When g ′2(0) = 0 the optimality condition

becomes

|∇l(x)i | ≤ g ′1(0) if xi = 0.

I When g2 = g1 − h the optimality condition
becomes

|∇l(x)i | ≤ h′(0) if xi = 0.

2 1 0 1
|u|

0

1

2

h
(|u
|)

Regularization functions h( ·)
`1

Capped `1
Log penalty
`p  with p=1/2

Examples:
`1 : h(u) = λu ⇒ |∇l(x)i | ≤ λ if xi = 0

Capped-`1 : h(u) = λmin(u, θ) ⇒ |∇l(x)i | ≤ λ if xi = 0

Log sum : h(u) = λ log(1+ u/θ) ⇒ |∇l(x)i | ≤ λ/θ if xi = 0
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Active set algorithm
Algorithm for Log sum regularization
Inputs
- Initial active set ϕ = ∅
1: repeat
2: x← Solve Problem (1) with current active set ϕ (using GIST)
3: Compute r← |∇l(x)|
4: for k = 1, . . . , ks do
5: j ← argmaxi∈ϕ̄ ri
6: If rj > h′(0) + ε then ϕ← j ∪ ϕ
7: end for
8: until stopping criterion is met

Discussion
I Only small problems are solved (dimension |ϕ|).
I Use warm-starting trick.
I At each iteration, ks variables are added to the active set.
I Step 3 can be computed in parallel.
I ε > 0 typically small, acts as a threshold similar to OMP.
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Numerical experiments
Datasets

I Simulated Dataset: p = [102, 107], SNR=30dB, n = 100, t = 10.
I Dorothea Dataset: p = 105, n = 1150.
I URL Reputation Dataset: p = 3.2× 106, n = 20 000, sparse.

Compared Methods
I DC Algorithm, reweighted-`1 (DC-Lasso) [2, 3].
I General Iterative Shrinkage and Threshold (GIST) [4].
I Proposed Active Set approach with GIST (AS-GIST).

Performance measures
I CPU time used in the algorithm.
I Final objective value.

Both measures averaged over 10
splits/generations of the data.

Parameters
I Regularized least-squares.
I Log sum with θ = 0.1.
I ks = 10 and ε = 0.1.
I Computed on Octave.
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Simulated dataset

10
2

10
4

10
6

10
−2

10
0

10
2

10
4

p

C
P

U
 t
im

e
 (

s
)

Generated dataset

 

 

DC−Lasso
GIST
AS−GIST

10
2

10
4

10
6

10
−1

10
0

p

F
in

a
l 
o
b
je

c
ti
v
e
 v

a
lu

e

Generated dataset

Results
I Standard deviation in dashed lines.
I DC-Lasso outperformed by GIST and AS-GIST.
I GIST and AS-GIST statistically equivalent and > DC-Lasso.
I AS-GIST up to 20× faster than GIST and > 100× faster than DC-Lasso.
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Dorothea dataset
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Results
I Performance measures along the regularization path.
I DC-Lasso not computed due to computational time.
I AS-GIST more efficient on sparse solutions (large λ).
I Better objective value of AS-GIST for small λ.
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URL Reputation dataset
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Results
I Very high dimension p = 3.2× 106

I Important computational gain with AS-GIST.
I Important gain in objective value for small λ (ε parameter).
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Conclusion

Active set strategy
I When solution is sparse: use active set even for nonconvex problems.
I Spends more time optimizing values that count.
I Applicable to a wide class of regularization term.
I Any convex differentiable loss (least-squares, logistic regression).
I Simple algorithm, code will be available.

Working on
I More general optimality condition (Clarke differential).
I Convergence proof to stationary point.
I Study the regularization effect of initializing by 0 and choice of ε.
I Applications in large scale datasets/problems.
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Examples of optimization problems

min
x∈Rp

{ f (x) = l(x) + r(x) }

Data-fitting term
I Least-squares : l(x) = 1

2

∑
k(yi − ak

>x)2 = 1
2‖y − Ax‖2

I Logistic regression : l(x) =
∑

k log(1+ exp(−ykak
>x))

I SVM Rank : l(x) =
∑

k max(0, 1− ak
>x)2

Gradient of the form ∇l(x) = A>e(x)

Regularization term
I Lasso (`1) : r(x) = λ‖x‖1
I Capped-`1 : r(x) = λ

∑
i min(|xi |, θ)

I Log sum : r(x) = λ
∑

i log(1+ |xi |/θ)
I `p-pseudonorm : r(x) = λ

∑
i |xi |p

Regularizer of the form r(x) =
∑p

i h(|xi |)
2 1 0 1

|u|
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2

h
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Regularization functions h( ·)
`1

Capped `1
Log penalty
`p  with p=1/2
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